
NASA C o n w o r  Report 178290 

ICASE REPORT NO, 87-27 

ICASE 
APPROXIMATION OF DISCRETE-TIME LQG COMPENSATORS FOR 

DISTRIBUTED SYSTEMS WITH BOUNDARY INPUT AND UNBOUNDED 

MEASUREMENT 

J. S .  Gibson 

I. G. R o s e n  

C o n t r a c t  N o .  NASl-18107 

A p r i l  1987 
(NASA-CE- 178290) A P P 6 C X I I l A T I C L  CF 

C l S C 3 E T E - I X f f E  106 C C E F E B S A I C F ~  E C f j  
C I S T B I B U I E D  SYSIEBS 91'38 BCUIKAEY INPUT A N D  
C K E O U A D E C  f¶EASUSEf!EIT F i n a l  &€Fort (UASA) 
5 1  p Avail: % T I S  EC A03/L IE  A01 CSCL 12A 63/64 

Operated by the Universities Space Research Association 
, A  
I 
r 

National Aeronauticsand 
Space Administration 

Lngky-- 
Hampton,Virginia 23665 

N87-22445 

Unclas 
0072736 



Approximation of Discrete-Time LQG Compensators for Distributed 
System with Boundary Input and Unbounded Measurementt 

58. Gibson* 
Department of Mechanical, 

Aerospace and Nuclear Engineering 
University of California, Los Angeles 

Los Angeles, CA 90024 

and 

I.G. Rosen** 
Department of Mathematics 

University of Southern California 
Los Angels, CA 90089 

ABSTRACT 

We consider the approximation of optimal discrete-time linear quadratic Gaussian (LQG) 

compensators for distributed parameter control systems with boundary input and unbounded 

measurement. Our approach applies to a wide range of problems that can be formulated in a state 

space on which both the discrete-time input and output operators are continuous. Approximating 

compensators are obtained via application of the LQG theory and associated approximation results 

for infinite dimensional discrete-time control systems with bounded input and output. Numerical 

results for spline and modal based approximation schemes used to compute optimal compensators 

for a one dimensional heat equation with either Neumann or Dirichlet boundary control and 

pointwise meaSuremcnt of ttmperaturt arc presented and discussed. 
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1. moductipn 

In this paper we develop an approximation theory for the computation of optimal discrete-time 

linear quadratic Gaussian (LQG) compensators (combined feedback control law and state estimator) 

for distributed parameter systems with boundary input or control and unbounded output or 

measurement. In a continuous time setting, boundary input typically results in an unbounded input 

operator. That is, the system's input operator maps the control input into a space larger than the 

state space in which the open-loop system is usually formulated. In the discrete-time case, on the 

other hand, for a wide class of distributed systems, the resulting input operator is bounded on the 

usual underlying state space. By unbounded output or measurement is meant that the system 

output operator has domain in a space smaller than the usual open-loop state space. 

For continuous time systems, Pritchard and Salamon (1987) have established an abstract 

semigroup theoretic framework for treating the linear quadratic regulator problem (control only) for 

infinite dimensional systems with unbounded input and output operators. Their approach is based 

upon a weak or distributional formulation of the Riccati equations which characterize the optimal 

feedback control laws in an appropriate dual space . Curtain (1984) provides a procedure for the 

design of finite dimensional compensators for parabolic systems with unbounded control and 

observation. In (Curtain and Salamon, 1986) a finite dimensional compensator design procedure 

for a wider class of infinite dimensional systems with unbounded input (but bounded output) 

including hereditary systems with control delays and partial differential systems with boundary 

control is developed. Lasiecka and Triggiani have looked at linear regulator problems for parabolic 

(1983a, 1987a) and hyperbolic (1983b, 1986) systems with boundary control and obtained, 

among other things, global and local regularity results for the optimal controls and state 

trajectories. In (Lasiecka and Traggiani, 1987b) Galerkin approximations and an associated 

convergence theory for closed-loop solutions to regulator problems for parabolic systems with 

Dirichlet boundary input are studied. A more complete survey of the boundary control literature 

including references to some of the poineering work in this area can be found in (Pritchard and 

Salamon, 1987). 
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In our treatment here, we consider the discrete-time problem (Le. piecewise constant input and 

sampled output). Our interest in the discrete-time or digital formulation is motivated by 1) the fact 

that it represents a more accurate or realistic description of how the linear-quadratic theory for 

distributed systems would actually be applied in practice, and by 2) how the boundedness of the 

discrete-time input operator in the usual underlying state space facilitates the development of an 

approximation theory which can simultaneously handle both unbounded input and unbounded 

output. Our approach is based upon an application of the theory we developed earlier in (Gibson 

and Rosen, 1985 and 1986) for the approximation of optimal discrete-time LQG compensators for 

infinite dimensional systems with bounded input and output. Our results are applicable to a rather 

wide class of boundary control systems in which a restriction of the state transition operator and the 

discrete-time input operator are bounded on a space on which the output operator is bounded as 

well. 

An outline of the remainder of the paper is as follows. In Section 2 we describe an abstract 

framework for the study of boundary control systems and their discrete-time formulation. In 

Section 3 we review the LQG theory for infinite dimensional discrete-time systems and associated 

abstract approximation results. In the fourth section, we illustrate the application of our technique 

on an example involving the spline and modal subspace based approximation of optimal 

compensators for a one dimensional heat equation with either Neumann or Dirichlet boundary 

control and pointwise measurement of temperature. Section 5 contains some concluding remarks. 

2. The Boundarv Control &tern and its Discrete-Time Formu 1- 

We employ a semigroup theoretic formulation for a class of abstract boundary control systems 

which has appeared elsewhere in the literature. See, for example, (Curtain and Salamon, 1986). 

Let W,V and H be Hilbert spaces with W and V densely and continuously embedded in H. We 

consider boundary control systems of the form 

2 
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where A e Z(W,H), the boundary input operator r is an element in Z(W,Rm) and the output 

operator C is an element in Z(V,RP). 

We require the assumptions that 1) r is surjective and its null space, n<r) = {(p E W: 

Tcp = 0}, is dense in H, 2) the operator (2, defined to be the restriction of the operator A to 7l(r>, 

is a closed operator on H and has non-empty resolvent set and 3) for each T > 0, all wo E W, and 

v E C1(O,T; Rm) with Two = v(O), there exists a unique w E C([O,TJ; W) n C1([O,Tl; H) which 

depends continuously on wo and v and which satisfies (2.1) - (2.3) for each t E [O,TJ. It then 

follows (see Hille and Phillips, 1957) that the operator Q : Dom (Q) c H + H given by (29 = 

Acp for cp E Dom(Q) = %(I?) is the infinitesimal generator of a Co semigroup, { T(t) : t 2 01, 

of bounded linear operators on H. 

Define the space 2 as the dual of Dorn(Q *) c H. Then H is densely and continuously 

embedded in Z, { T (t) : t 2 0 )  can be uniquely extended to a Co semigroup of bounded linear 

operators on Z, and the operator Q can be uniquely extended to the operator in Z (H,Z) given by 

( Q q)(y) = <cp, CC *pH for cp E H, w E Dom(Q*). 

For v e Rm, since r is onto, there exists a w E W such that Tw = v. With this w define 

a3v = Aw - Qw. It can be shown (see Curtain and Salmon, 1986) that a3 is a well defined 

element in Z (Rm, Z) and that for each wo E H and v e L,(O,T; Rm) there exists a unique w E 

C([O,TJ; H) n H1 (0,T; Z) which depends continuously on wo and v and which satisfies 

W(t) = Qw(t) + a3v(t), t > 0 
w(0) = WO 

in Z. The function w is given by 

(2.5) w(t) = T(t)wo + T ( t  - S) BV(s)ds, t 2 0 j 0 
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and is referred to as a weak solution to the boundary control system (2.1) - (2.3). 
The discrete-time formulation of (2.1) - (2.4) is found by considering piecewise-constant 

controls of the form 

(2.6) v(t) = uk , t E [kz, (k + I)@, k = 0,1,2 ,... 

where z denotes the length of the sampling interval. Let wk = w(kz) , k = O,1,2, ... where w(-) 

is the unique weak solution to (2.1) - (2.3) given by (2.5) corresponding to wo E H and input v 

given by (2.6). (We note that with piecewise constant input of the form (2.6), the solution w is in 

fact a strong solution on each subinterval [kz, (k+l)z].) Recalling that r is a surjection, let 

Ty E L (Rm, W) denote anv right inverse of r and for each k = 0,l ,2,... defiie 

% E C([kz, (k + 1)2]; H) by %(t) = w(t) - r u k ,  t E [kz, (k + l)z]. Then 

ik(f) = w(t) = Qw(t) + nuk 

= Q%(t) + (Q + n r ) p u k  

= Q%(t) + A F u k ,  t E (kz, (k + 1)2], 

Therefore 

or 

wk+l = Twk + Buk, k = 0,1,2 ,... 
W,EH 



where T E Z(H) and B E Z(Rm, H) are given by T = T(T) and B = (I - T(T)) p+ 
jT T (s)APds respectively. 

0 

We note that the discrete-time input operator B is well defined and does not depend upon a 

particular choice for P. Indeed if B, and B, are the input operators which correspond to the 

choices r+ and r+ then for u E Rm we have 
1 2 

But (r+ - r+ )U E no = Dom(Q) and therefore 
1 2  

0 0 

d 
= J - T(S)(? - q ) u d s  = (T(T) - I)(S - u . ds 

0 

In addition, if I? is chosen so that Ill, (P) c 7L (A), B takes on the particularly simple form B = 

(I - T(2))P. It is also worth noting that a simple calculation reveals that 

T 
B = Io T(s) 33ds 

in agreement with the standard technique for obtaining the discrete or sampled time formulation of 

a continuous time system in either a finite dimensional or bounded input setting. 

It is our intention here to apply the approximation theory we developed earlier in (Gibson and 

Rosen, 1986) for the design of optimal discrete-time LQG compensators for infinite dimensional 

systems with bounded input and output operators. We therefore require the additional assumptions 

that 4)  T = T(T) E Z(V) and 5)  R(P) c V. Although not all boundary control systems we 

might formulate would satisfy these conditions, as will become evident in Section 4 below, a wide 

class of interesting and important systems do. In this case, the control system (2.1) - (2.4) takes 

the form 
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Wk+l = TWk + BUk, k = 0,1,2 ,... 
W0€V 

yk = cwk, k = 0,1,2 ,... . 

3. W C  Theorv for Infinite Dimensional Discrete -Time Svstems and Finite 

Dimensional ~ D D  rox imation 

The discrete-time linear quadratic control or regulator problem for the boundary control system 

(2.1) - (2.3) takes the form 

* *  Find u* = { uk) k = & R,(O, -; Rm) which minimizes the quadratic performance index 

where Q E C(V) is self-adjoint and nonnegative, R E C(Rm) is a symmetric positive definite 

mxm matrix and the state w = (wk} O0 evolves according to the recurrence (2.7), (2.8). 
k=O 

* * The optimal control is given in closed-loop, linear state feedback form by u k  = -FWk, 

k = 0,1,2, ... where F = (R + B"W)-'B*Il T and IT is the minimal nonnegative, self-adjoint 

solution (if it exists) to the operator algebraic Riccati equation 

A control u is said to be admissible for the initial data wo if the resulting state trajectory wk = 

wk(wo,u), k = O,1,2, ... is such that J(u) e - . If for each wo E V there exists an admissible 

control u, then the Riccati equation (3.1) admits a self-adjoint nonnegative solution n. If, in 

addition, an admissible control drives the state wk to zero, asymptotically as k 4 -, then this 

solution is unique (See (Gibson and Rosen, 1985)). The optimal state trajectory w* = { wk } = 
* 
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* 
k 

evolves according to w = Skwo, k = 0,1,2, ... where the closed loop state transition operator 

S E 2 (V) is given by S = T - BF. If Q is coercive, then S has spectral radius less than one and is 

uniformly exponentially stable. From the finite dimensionality of the control space we obtain 

* * u = -<f,wk+, k=0,1,2 ,... (3.2) k 

m 

j=l 
where f = (f,,f,,...,fm)T E x V is referred to as the optimal functional feedback control gains. 

When only a finite dimensional measurement y = ( yk} of the infinite dimensional state w 
= o  

is available (Le. equation (2.9)) a state estimator or observer is required. For a given input 

sequence u and corresponding output sequence y the optimal LQG estimator is given by 

A h h A 

where the optimal estimator or observer gains F E X(RP,V) are given by F = T n C*(R + 
C ll C*)-l with Il E 35 (V) the minimal self-adjoint, nonnegative solution (if one exists) to the 

operator algebraic Riccati equation 

h A 

(3.5) h=T( h - f i  C*(k+ C h  C*)-lCh)T*+ 6 .  
A A 

The operator Q E X(V) is assumed to be self-adjoint, nonnegative and the pxp matrix R is 

assumed to be symmetric, positive definite. In a stochastic setting, the operator Q and the matrix 

R are assumed to be respectively the covariance operator and matrix for uncorrelated, zero-mean, 

stationary, Gaussian white noise processes which corrupt the state and measurement. In this case, 

if Q is trace class, (3.3), (3.4) is the infiiite dimensional analog of the discrete-time Kalman-Bucy 

filter. In a strictly deterministic setting, Q and R are assumed to be determined via engineering 

design criteria such as stability margins, robustness of the closed-loop system, etc. 

A 

A 

A 

h A 
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A 

Sufficient conditions for existence and uniqueness of self-adjoint, nonnegative solutions Il to 

the algebraic Riccati equation (3.5) are of course analogous to the ones given earlier for the control 

problem (i.e. with regard to the usual duality which exists between the optimal LQG control and 

estimator problems). 
A 

Since F E (RP,V), it has a representation of the form 

A A 

Fy = fTy  , y E RP 

A P 
where f = (f f 2,..., fJT E x V is referred to as the optimal functional observer gains. 

j= 1 

When the optimal control law is used together with the optimal observer, that is 

(3.6) 
A *  A *  u =-F w , k=0,1,2, ... 
k k 

A* where &* = (G*)OO and corresponding output 

y = y*, we obtain the optimal LQG compensator. The resulting closed-loop system is given by 

is given by (3.3), (3.4) with input u = u 
k k = O  

Wk = Ak'UT0, k = 0,1,2,... 

* where 'UT = (wky G l  >T with (wk) k = 0 the state trajectory which results from the input (3.6) 

and A e Z(VxV) is given by 
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A 
A *  If we define % to be the difference between wk and %* ; ek = wk - wk 3 we find ek = Skeo , 

k = 0,1,2, ... where S = T - FC. It can be shown that if S and S are uniformly exponentially 

stable, so too is A and its spectrum, o(A), is given by o(A) = o(S) U o(S ). 

A 
k 

h A 

A 

For each N = 1,2, ... let VN denote a finite dimensional subspace of V and let PN be a 

bounded linear mapping from V onto VN (for example, the orthogonal projection with respect to 
A 

either the V or H inner product). Let TN, QN, QN E Z (VN), BN E Z (Rm,VN) and CN E 

Z(VN,RP) and set 

* 
N N 

FN = (R + B* IINBN)-'B IINTN 

and 

A 

where IIN and ITN are the minimal, self-adjoint, nonnegative solutions (once again if they exist) to 

the finite dimensional operator algebraic Riccati equations 

and 

c 

(3.8) 

^ *  
respectively. The approximating optimal compensator is given by u^* = -FNw 

where w * = ( w * ) 

k = 0,1,2,.. 
A NJk NJk 

is determined according to the approximating observer 
N NJk k = O  
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A A A A 

* * The measurements y are given by y = cwN,k , k = 0,1,2, ... where 
N N , k  

k 
The resulting closed-loop system is given by UTN,, = 4 

w N , k  = (wNSr w:., 1' and AN E L (VXV,) is given by 

k = 0,1,2, ... where 
A 

h A 

Let SN = TN - BNFN and S, = TN - FNCN and assume that the spaces VN are V-approximating 

in the sense that PN + I strongly on V as N + - . Assume further that 
A A 

TNPN+T, T*PN + T*, QNPN + Qand QNPN + Q stronglyonvandthat 

BN + B and CNPN + C in norm as N + 00. If the pairs (TN, BN) and (T* , C* ) are 

uniformly exponentially stabilizable and the pairs (TN, QN) and (T* , QN) are detectable (see 

N 

N N  

N 

Kwakernaak and Sivan, 1972) then there exist unique, self-adjoint, nonnegative solutions IIN and 

llN to the algebraic Riccati equations (3.1) and (3.5). If IIN and IIN are bounded from above 

uniformly in N, then IINPN and IINPN converge weakly to II and II respectively as N + 00 . 
If, in addition, SN and S ,  are uniformly exponentially stable, uniformly with respect to N, 

then IINPN and "NPN converge strongly. Weak convergence of IINPN to n yields strong 

A A 

A A 

A 

h 

convergence of F#N to F and SNPN to S .  If IINPN converges strongly then FNPN + F in 

norm. Weak convergence of IINPN to II yields weak convergence of FN to F and SNPN to 
A A A h A 
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I 

i 

I 

h h h h h h A 

S. When nNPN + ll strongly, then FN + F in norm and SNPN + S strongly in V as 

N + 00. Finally, if we let PN denote the mapping of VXV onto VXV, given by PN(wl, w2) = 

(wl, PNw2) then llNPN 

weakly or strongly depending only upon whether llNPN + IJ weakly or strongly as N + 0 0 .  

Under appropriate additional hypotheses on the spectral properties of the open-loop system, the 

ll weakly or strongly is sufficient to conclude that & N P N  + A 
h A 

nature of the approximation spaces VN and the mappings PN, it is possible to obtain a result 

regarding the norm convergence of ANP, to A. Norm convergence of the closed-loop state 

transition operators is sufficient to conclude that uniform exponential stability of & implies uniform 

exponential stability of AN for all N sufficiently large (see Gibson and Rosen 1986). 

In practice, the finite dimensional approximating subspaces VN are often constructed using any 

one of a number of common finite element bases, e.g. polynomial and hermite spline functions, 

mode shapes, orthogonal polynomials, etc. For some of the discrete-time boundary control 

systems of particular interest to us here, the approximations to T and B, TN and BN, are typically 

obtained by approximating the continuous time semigroup, { T(t) : t 2 0), by a semigroup of 

bounded linear operators on V,, { r N ( t ) :  t 2 0). (In actual fact it is the infinitesimal generator (2 

of the semigroup { T (t): t 2 0) which is approximated by a bounded linear operator Q, on VN with 

(TN(t): t 2 0) then being defined by T,(t) =exp (QNt), t 2 0). With TN= T N ( 2 )  and B N  = (I - 
T 

0 
TN(T>>PN~+ + J TN(s)PNAr+ds, the necessary conditions for convergence are argued using the 

well known Trotter-Kato semigroup approximation result (see (Kato, 1966)). The approximations 

to Q, Q and C, QN Q N  and CNrespectively, are typically taken to be & = PNQ, QN = P N b  

and 

h h A 

CN = CP,. 

N T nN nN denote a basis for VN andset @= (97 ,cpy ,..., cp ) E x VN. 
j= 1 b t{cp  j 1 j = l  n N  

Adopting the convention that [L] denotes the matrix representation with respect to the basis 

{Vi ) i = ,  nN for a linear operator L with domain and/or range in VN, we fiid that 

A n 

@ N[cN]T)-l where and @ are the unique, symmetric, nonnegative solutions to the 

nN x nN matrix algebraic Riccati equations 
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The matrix MN is the nN x nN Gramian matrix <aN, (@N)T>v . 

k = 0,1,2, ... with 

h h 

W* = (MN)-I c aN, wo>v . 
N ,O 

m 
The approximating optimal functional feedback control g&a,  fN = (f: f;..., f i )T E x 

are given by fN = [FN](M~)-'@~ and the approximating optimal functional observer gains 
j=l 

h A h  h P h h 

P =  ( f f j  fy, ..-, fDT E X VN by f = [ F N ] ~ @ ~ .  If IINPN + n weakly (strongly) 
j= 1 

h h 

then fy + fi, i = 1,2, ..., m weakly (strongly) in V. If nNPN 

fy + fi ,i = 1,2, ..., p weakly (strongly) in V. If the injection V c H is compact, then in either 

case we have fy +fi ,  i = 1,2 ,..., m and ff' + fi, i = 1,2 ,..., p strongly in H. 

II weakly (strongly) then 

h 
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4. ExamDlesandNumericalesULt 
We consider the one dimensional heat equation 

a W  - (t,x) = a - (t,x), 0 < x < l,t > 0, (4.1) 
at ax2 

where a E R1, with a homogeneous Dirichlet boundary condition at x = 0, 

(4.2) w(t,O) = 0, t > 0, 

and either Neumann, 

aw 
(4.3) - (t , l)  = v(t), t > 0, 

i3X 

or Dirichlet, 

(4.4) w(t, 1) = v(t), t > 0, 

boundary control or input at x = 1 where v e h(0, -). For output we take a temperature 

measurement 

(4.5) y(t) = w(t, 0, t 2 0, 

at some fixed point E (0,l). Initial conditions for these systems are assumed to be of the form 

(4.6) N O ,  x) = WO (XI, O S X l l  

where wo E (0, 1). 

Although the two control systems above appear to be similar, they are, in fact, quite different and 

must be treated separately. We begin with the more straight forward of the two - the case of 
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Neumann boundary control. Let H = 

W = H2 (0, 1) f l  HL(0, 1). With H endowed with the usual L2 inner product, V with the inner 

(0, l), V = Hi (0, 1) = { cp E "(0,  1) : cp (0) = 0 )  and 

1 product < cp, w >v = lo Dcp D y  and W with the inner product < v>, y >w = 1' D2cp D2v we have thc 

continuous and dense embeddings W c V c H c V' c W .  Define A E Z(W, H), r E Z(W, R1) by 

A cp = a2 D2q, T(p = Dcp( 1) and Ccp = cp(c) respectively. With these definitions it is immediately clear 

that the boundary control system (4.1) - (4.3), ( 4 3 ,  (4.6) is of the general form (2.1) - (2.4). The 

operator Q: Dom (a) c H+H is given by Qcp = a2 D2cp for cp E {cp E @(O, 1): cp(0) = Dcp(1)) = 

0 ) .  It is densely defined, negative definite, self-adjoint and it is the infintesimal generator of a 

I 
0 

i 

uniformly exponentially stable analytic semigroup [ T (t): t 1 0) of bounded, self-adjoint linear 

operators on H. In addition, [ 

semigroup of bounded, self-adjoint operators on V with generator Q given by Qcp = Qcp for cp E { cp 

E H3 (0, 1): cp(0) = Dq(1) = D2v>(0) = 0 ) .  Choosing I? E C(R1, W) as ( T+u)(x) = xu for x E [0, 

11, we have Fl,( l?) c V, R( l?) c n(A) and that conditions 1) -5) given in Section 2 are 

satisfied. For the optimal control and estimator problems, we take Q = SI, Q = q I, R = r and R = r 

2 0 and r, 1 > 0. The uniform exponential stability of the 

(t): t 2 0) is also a uniformly exponentially stable, analytic 

A h  

where I is the identity operator on V, q, 

semigroup { T(t): t 2 0) on V implies that the algebraic Riccati equations (3.1) and (3.5) admit 

unique, nonnegative self-adjoint solutions I3 and fI respectively. The optimal control (3.2) takes the 

form 

(4.7) u l  = - DfDwl, k = 0,1,2 ,... 
1 

0 

where the optimal functional feedback control gain f along with the optimal functional observer gain 

f are elements in H i  (0,l). 
A 

We construct an approximation scheme using a linear spline based Ritz-Galerkin approach. For 

each N = 1,2, ... let [ (pN)N 

interval [0,1] with respect to the uniform mesh [ O,l/N, 2/N, ..., 1 1. We discard the element centered 

at x = 0, cpN, set VN = ((pN} N 

with respect to the V h e r  product. It is clear that VN is an N dimensional subspace of V. 

denote the usual linear spline or "hat" functions defined on the 
J j = O  

and choose PN to be the orthogonal projection of V onto VN 
0 1 1'1 
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For cp & Dom (a), IQcplH 2 a21cplv 2 a21qlH and therefore 0 E p(Q) and Q-l: H + Dom(Q) 

satisfies lQ-'cpIv I a-21cplH for E H. We define Q, : V, + V, as the inverse of the operator 

Q -1 = PNQ-l restricted to VW That the operator Q, is well defined follows from the fact that 

< Q: <p" ' p ~ > ~  = -a-21cpNl for cpN VN and that it is self-adjoint from <QNqN,  yN>,, = 2 

H 

N I -a-2<hN9N,QNyN>H. For (PN & VN and VN = ~ N ( P N  , the estimate 

implies that QN is the infinitesimal generator of a Ceo semigroup { T N ( t )  : t 2 0 )  of bounded, 

self-adjoint linear operators on V, satisfying IrN(t)l I e-a2 t , t 2 0. 

Let 9, denote the interpolation operator from V onto V,. Then for cp E W, elementary 

approximation properties of linear interpolatory spline functions (see (Schultz, 197 1)) imply 

1 

and therefore, since W is dense in V, that P, + I strongly on V as N+ - . Also, it follows that Q 
N 

= P N Q - b  Q-' strongly on V as N+ - . If we define TN = TN('C), then the Trotter-Kat0 

approximation theorem (see (Pazy, 1983)) yields TNPN + T (and therefore of course that TNPN + * 
* I 

T") strongly on V as N+ - where T = T = T(T). 

Since R(p ) c V,, we define the approximating input operators BN by BN = (I - T, (T) )~  and 
h 

set QN = SI, QN = 6 I and C, = C. The strong convergence of P, to the identity and TNPN to T ! 
, together with the finite dimensionality of the domain of B and the range of C are sufficient to 

I 
A A 

conclude that QNPN + Q, QNPN + Q strongly on V and that B, + B and CNPN + C in norm as 

N+-.  

The uniform exponential stability of the semigroups ( T N ( t )  : t 2 0 )  implies 

I 
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(4.8) ITk l V  = I(T* )k~v I Ik, k = 0,1,2 ,... 
N N 

2 with r = e -a ' < 1. Consequently the pairs (TWBN) and (TN, CG) are uniformly exponentially 
A 

stabilizable and the pairs (TN,QN) and (T,, QN) are detectable. it follows therefore that there exist 

unique self-adjoint, nonnegative solutions lTN and IIN to the finite dimensional algebraic Riccati 

equations (3.7) and (3.8) respectively. The uniform exponential bound (4.8) with r < 1 on the 

approximating open-loop state transition operators TN imples that the zero control yields a uniform 

upper bound for nN and lTN and the uniform exponential stability of S, = TN - BNFN and S ,  = TN 

- FNCN . We can conclude therefore that lTNPN and n,P, converge strongly in V to II, and nN 
respectively and that FNPN and FN converge to F and F in norm as N + -. The approximating 

optimal functional feedback control and observer gains, fN  and fN, converge respectively to f and f 

in the H1 norm as N + -. 

h 

h A 

A h A 

h A 

A A 

In implementing the scheme outlined above, eigenvector decomposition of the associated 

Hamiltonian matrix was used to solve the matrix algebraic Riccati equations (3.10) and (3.1 1) (see 

Pappas, et. al., 1980). Matrix exponentials, where required, were also computed using 

eigenvalue/eigenvector decomposition. All calculations were carried out via codes written in Fortran 

and run on an IBM PC AT. We set a2 = . l ,  q = q = r = r = 1.0, 6 = 45 /2 and z = .01 and obtained 

the functional gains plotted in Figs. 4.1 and 4.2 below. We plot fN and fN as well as Df, and DfN 

so as to exhibit the H1 convergence and since it is Df (or DfN) which actually appears as the feedback 

kernel in the optimal control law (4.7). 

A 
A 

A h 

We also simulated the operation of the closed-loop system with an approximating compensator. 

Using a 20 mode model for the infinite dimensional system and N = 12, we computed the closed- 

loop spectrum of the approximating compensator (i.e. the eigenvalues of the operator 4, given by 

(3.9) with N = 12). These eigenvalues along with the first 20 open-loop eigenvalues (Le. the first 

20 eigenvalues of the operator T = 3+ (2)) and the approximating closed-loop control and observer 

eigenvalues are tabulated in Table 4.1 below. Table 4.1 reveals that the last seven open-loop 

eigenvalues remain essentially unchanged in the closed-loop system4.e. these modes are neither 

controlled nor observed by the finite dimensional compensator. Also, as one would expect, b(AN) 
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n 

consists essentially of the union of o(SN) , o( S,) and the eigenvalues corresponding to the 

uncontrolledhnobserved modes of the open-loop system. 

It is worth noting that the scheme we have outlined above for the Neumann boundary control 

problem is the same scheme that one would ordinarily use if the problem were formulated in the space 

H - i.e. if the output operator C was bounded on k ( 0 , l )  (see Gibson and Rosen, 1986). This is 

possible primarily because the space V = H,(0,1) is the natural energy space for the underlying 

homogeneous or open-loop system. Consequently, the inherent self-adjointness and coercivity in the 

problem is preserved when it is formulated in the stronger space. In the case of Dirichlet boundary 

control, the situation is quite different. 

1 

For the Dirichlet boundary control system (4.1), (4.2), (4.4) - (4.6), we choose the spaces H, V 

and W and their corresponding inner products to be the same as they were in the Neumann case. 

The operators A E Z(W,H) and C E Z(V,R1) also remain unchanged, however now we have 

E Z(W,R1) given by rcp = cp(1). It then follows that the operator Q : Dom(Q) c H + H is given 

by Qcp = a2D2cp for cp E H2(0,1) n H1 (0,l). It is well known that Q is densely defined, negative 

definite and self-adjoint and that it is the infinitesimal generator of the uniformly exponentially stable 

analytic semigroup { T(t)  : t 2 0) of bounded, self-adjoint linear operators on H. However this 

0 

time the operators T(t) for t > 0 are neither self-adjoint nor a semigroup on V. Indeed, since 

‘irt(T(t)) c Hi (0,l) for all t > 0 and since H (0,l) is a closed proper subspace of H1 (O,l), T(t) is 1 

0 L 

not strongly continuous in the V-norm at t = 0. (The fact that our general framework requires 

TTY = 1 and ‘irtv) c V precludes our choosing V to be H:(O,l).) On the other hand, 

(T(t) : t 2 0 )  an analytic semigroup implies (see Pazy, 1983) that there exists a constant p > 0 for 

which IQT(t)lH 5 pt-’ for t > 0. Consequently, if we define T = T(z), then it follows that 

T E Z(V) and moreover, that 

fork = 1,2, ... and cp E V. We have therefore 
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(4.9) IT k I, = I(T*)kl, I &, k = 0,1,2 ,... 

where M > 0 and r < 1. 

We again choose l? E Z(R',W) as ( l?u)(x) = xu for x E [0,1]. Then R(l?) c q(A) and we 

have reformulated the boundary control system (4. l), (4.2), (4.4) - (4.6) in the general form of (2.1) 

- (2.4) and conditions 1) - 5) are satisfied. 

We formulate the optimal control problem with the performance index 

where q 2 0 and r > 0. That is, we take Q to be the bounded, self-adjoint nonnegative operator on 

HL(0,l) given by (Qcp)(x) = q 

Q = q I a n d R = r  with 42 0 and r ^ >  0. 

1: cp(z)dzdy and R to be r. For the estimator problem we set 
n n  n n  

The uniform exponential bound (4.9 ) implies the existence of unique, nonnegative, self-adjoint 

solutions I3 and I3 to the algebraic Riccati equations (3.1) and (3.5). The optimal control is again of 

the form (4.7) with the optimal functional gains f and f in H, 

I 
I n 

1 A 

The fact that { T(t) : t 2 0) is not a semigroup on V precludes the use of a semigroup - theoretic 

approach to approximation. We therefore employ modal subspaces and approximate the open-loop 

state transition operator T directly as a bounded linear operator on V. 

For each N = 1,2, ... let V, = span {VjJ where for x E [0,1], <po(x) = x and qj(x) = sinjnx, 
j = O  

j = 1,2, ..., N. Let pN denote the orthogonal projection of H = L,(O,l) onto span { 'pj} 

and let PN denote the orthogonal projection of V onto V,. Using the fact that V = H'(0,l) Q3 'po, it 
I j = 1  

0 
is not difficult to see that PN'p = 'p( l)'po + pN('p - 'p( l)cpo) for 'p E V and hence, via elementary 

properties of Fourier series (see Tolstov, 1962), that I(PN - 1)cplv = I(p, - I)(cp - 'p( l)cpo)lv + 0 
I as N + - for each cp E V. 

N .. 
If for y, = $, cpj E V, we define TN E Z(V,) by 

I Fo 
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then T* = PNT*, iTk I = I(T* k l V  I Mrk, k = 0,1,2, ... with M > 0 and r < 1 independent of N, N N f S  

as N + = for cp E V. similarly, T* pN + T* strongly on v as N + =. 
h 

N 
The approximating input, output and state penalization operators BN, C,, QN and QN take the 

form 

h 

cN = C,QN = qPNQ and QN = 6 I. Reasoning as we did in the Neumann case, the approximating 

algebraic Riccati equations (3.7) and (3.8) admit unique, nonnegative, self-adjoint solutions nN and 

nN respectively, nNPN + ll and nNPN + Il strongly on V and FNPN + F and FN + F in norm 

as N + = . The approximating functional feedback control and observer gains fN and fN converge 

A A h h h 

h 

h 

to f and f respectively, strongly in H1 as N -+ = . 
With a* = 1.0, q = = r = 1.0, f = 5.0, 6 = f i / 2  and z = .01 and the scheme outlined above we 

obtained the approximating optimal functional feedback control and observer gains plotted in Figs. 

4.3 and 4.4 below. The first 12 open-loop and the approximating closed-loop control and observer 

eigenvalues for N = 12 are tabulated in Table 4.2. 

Table 4.2 reveals an interlacing of the closed-loop control and open-loop eigenvalues. That is, 

the closed-loop control eigenvalues (i.e. the elements in the spectrum of S) are alternately more and 

less stable than the corresponding open-loop eigenvalues. We also have observed this phenomenon 

in other numerical studies we are carrying out involving LQG boundary control for flexible 

structures. In additon, in the Dirichlet boundary control system discussed above, if Q is chosen as 

the identity operator on V = HL(O,l), virtually all of the closed-loop control eigenvalues are less stable 

than the corresponding open-loop eigenvalues. It is clear that this non-standard behavior results from 

the presence of the one dimensional subspace represented by at p). Indeed, the behavior of the 

closed-loop spectrum in the case of Neumann boundary control is as would be expected. We feel that 

1 
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what we are seeing can most likely be explained via infinite dimensional analogs of existing results 

relating the asymptotic properties of the closed-loop spectrum of a linear regulator and the zeros of 

the corresponding open-loop transfer function (see Kwakernaak and Sivan, 1972 and Harvey and 

Stein, 1978). However, as of yet, we have been unable to establish this conjecture satisfactorily 

and we consider it to be beyond the scope of this paper, which is primarily concerned with 

approximation. We leave it as an interesting open question worthy of further investigation. 

5. Concludiu Remarks 

We have developed a framework for the finite dimensional approximation of optimal discrete-time 

LQG compensators for distributed parameter systems with boundary input and unbounded 

measurement. Our theory applies to the class of boundary control problems which can be formulated 

in a state space in which both the discrete-time input and output operators are continuous. We have 

used a functional analytic treatment to develop a convergence theory and have demonstrated the 

feasibility of our approach via examples involving either the Neumann or Dirichlet boundary control of 

a one dimensional heat equation with point measurement of temperature. We have shown that while 

both problems outwardly appear to be quite similar, they in fact require very different approaches to 

approximation. Also in the Dirichlet case the observed behavior of the resulting closed-loop spectrum 

is, in some ways unexpected and its explanation remains open. 

I 

1 
1 

Finally, we have been looking at the application of our schemes to LQG problems for flexible 

structures with boundary inputs and unbounded measurement and systems with control and/or 

observations delays. We have been considering vibration suppression for cantilevered beams via 

shear or moment inputs at the free end and pointvyise observation of strain or acceleration. These 

studies are currently underway with the results to be reported elsewhere. 

Acknowledgment: The authors would like to gratefully acknowledge Mr. Milton Lie of the 
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.2139 
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.9387 
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.7030 
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.00000650 
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.7857377 1 
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